
B61E96AD21C0BD71
C21DCFD43C59CD93
41FF07BFF9C7DD8A
1A0307F8DE0BA715
C80497A8815C5599
4C5C549C8B4E8433
22361BB6814E5FE5
97A52FF56A1DCED4

Title Conspectus 12022 Q1
Subtitle Chronical - I
Author Recursion Ninja
Date 12022+084 Friday, March 25
Word Count 2712 (ERT 11 min)
Code Lines 0

Formats .adoc .epub .html .markdown .txt

Quarter 1: Winter Solstice to Vernal Equinox
This is the first entry in my planned conspectus series, a sequence of quarterly
reports summarizing my professional and academic activities. Each quarter is de-
lineated between a solstice and an equinox. This first quarter of 12022 spans
the Tuesday, December 21 winter solstice and the Saturday, March 20 vernal
equinox.

Going forward, I plan to publish a chronicle entry shortly after each solstice and
equinox. The purpose of the entries is to serve as a recountal for my own refer-
ence as well as a simple informational source for my family, friends, and peers to
stay abreast of my professional efforts. I am pleased to start this series on a high
note, with many notable events to share.

Doctoral Program Matriculation
First and foremost, I am compelled to report my most significant professional de-
velopment. As I recently announced, I have accepted an offer to a Ph.D program
starting in the fall of 2020. I will refer readers to the announcement for more de-
tails. However, I will add that this development will significantly shape the course
of my professional trajectory for the next half decade and I am excited to discover
where pursuing this new path will lead me.

Masters Thesis
Day to day, throughout the quarter I have been diligently working of completing
my Masters thesis. The anticipated date of completion will be in mid April, with my
defence at the end of April, and my final thesis submission to Hunter college oc-
curring in May. My subsequent graduation is scheduled at the end of the summer
2022 academic term. I plan to elaborate on the details of my thesis in a subse-
quent blog post as it approaches it’s completion. Until then, here is a truly brief

https://recursion.ninja/blog/12022-Q1.adoc
https://recursion.ninja/blog/12022-Q1.epub
https://recursion.ninja/blog/12022-Q1.html
https://recursion.ninja/blog/12022-Q1.md
https://recursion.ninja/blog/12022-Q1.txt
https://recursion.ninja/blog/phd-matriculation


summary of my thesis.

The topic of my masters thesis explores the security of the TreeKEM protocol. My
goal is to formally verify, using the exhaustive state-space model checking tools
Promela and Spin, that the security properties of forward secrecy and post com-
promise security are inviolable via under the Continuous Group Key Agreement
(CGKA) security game for the TreeKEM protocol. The methodology I employ is
to model the CGKA game and the TreeKEM protocol in Promela and then use
Spin to verify that, that no sequence of moves an attacker makes while playing the
CGKA game can violate the specified security guarantees. It is quite an undertak-
ing both in terms of mathematical precision, as semantic accuracy is paramount,
and in software engineer, as the state-space explosion needs to be controlled.
Though the progress thus far has been slower than desirable, I take solace in
knowing that the scope of the task is greater than anticipated and that the result
will effect nearly all secure group messaging apps.

AMNH Research Associate
For five years, from 2015 to 2020, I worked in the Wheeler Lab at the American
Museum of Natural History (AMNH) developing a next generation phylogenetic
graph analysis software platform. Unfortunately, the onset of the COVID-19 pan-
demic caused a lapse of funding which proved nearly fatal to the project, causing
the development team to be dissolved before the software was completed. Since
2021, while not employed by AMNH, I have been an designated as a Research
Associate while concurrently pursuing my masters degree.

This quarter, Wheeler lab has secured additional grant funding for the stalled
project. We have been able to arrange for a temporary period of work over the
summer of 2022 during which time the loose ends left from the abrupt lapse in
funding can be wrapped up and leave the project in a state usable by other re-
searchers. I am hopeful that the endeavors of this opportunity will be successful,
allowing us to collaboratively publish and demonstrate the utility of this project,
while simultaneously publicly recognising incredible amount of effort that the team
in Wheeler Lab invested to bring the project to fruition.

Video File Shrinker
I have created and refined a Bash script for re-encoding video files in older codec
formats to the most advanced available codec. Currently, the High Efficiency Video
Coding (HEVC) is the most advanced and readily available video codec. There
are more more advanced codecs recently published, notably AV1 and VP9, how-
ever there are not currently implementations of these formats which are efficient
enough to be usable. The script recursively locates all video files in the specified

https://hal.inria.fr/hal-02425247/file/treekem%20%281%29.pdf
https://en.wikipedia.org/wiki/Promela
https://en.wikipedia.org/wiki/SPIN_model_checker
https://en.wikipedia.org/wiki/Forward_secrecy
https://doi.org/10.1109/CSF.2016.19
https://doi.org/10.1109/CSF.2016.19
https://doi.org/10.1007/978-3-030-56784-2_9
https://en.wikipedia.org/wiki/Combinatorial_explosion
https://www.securemessagingapps.com/
https://wardwheeler.wordpress.com/
https://www.amnh.org/research/computational-sciences
https://www.amnh.org/research/computational-sciences
https://en.wikipedia.org/wiki/High_Efficiency_Video_Coding
https://en.wikipedia.org/wiki/High_Efficiency_Video_Coding
https://en.wikipedia.org/wiki/AV1
https://en.wikipedia.org/wiki/VP9


directories and then replaces all videos which are not in the HEVC format with an
HEVC re-encoded version of the video.

The goal of the script is to save disk space, as the HEVC format takes noticeably
less disk space to store the same video with the same quality that older codec
formats. Experimental use of the script to re-encode videos archived on my exter-
nal hard drives shows an average of roughly 50% less disk space usage. Results
vary from file to file, with some having their size reduced by over 90% while others
barely exceed 15%. Overall I am quite satisfied with the robustness and efficiency
the script has exhibited thus far.

The project is:

1. Considered complete
2. Source code repository is publicly available
3. Released under the CC0 “Public Domain Dedication” license.

I-Blocklist Compiler
There is an additional Bash script I created for collecting and compiling multi-
ple blocklists from the [I-Blocklist website]. The script queries the I-Blocklist API
and compiles all reasonable blocklists which are exposed into a single, monolithic
blocklist. The resulting blocklist is intended to be used by a [BitTorrent] client, pre-
venting interaction with IP address ranges of known problematic actors. Results
of the script appear successful in terms of compilation efficiency and resulting
blocklist efficacy.

The project is:

1. Considered complete
2. Source code repository is publicly available
3. Released under the CC0 “Public Domain Dedication” license.

Haskell Code Quality Control
Haskell is by far my favorite programming language. There is little doubt that this
stems from my near daily usage of Haskell for over eight years. I have not only
used the Haskell language, but also contributed to the Haskell compiler GHC, the
Haskell build tool Cabal, and numerous core libraries of the Haskell ecosystem.
However, I have found myself unsatisfied with a few elements of my Haskell de-
velopment experience. I have made some progress on identifying and remedying
these deficiencies, but the process not near a usable state. An ideal outcome
would be all of the troubles being addressed via git commit hooks and continuous
integration checks. Below is a list of the pain points I find myself repeatedly irked

https://github.com/recursion-ninja/Video-Recoding-Script
https://creativecommons.org/publicdomain/zero/1.0
https://github.com/recursion-ninja/I-Blocklist-Builder/
https://creativecommons.org/publicdomain/zero/1.0


by and manually remedying.

1. Styling Cabal package description:

Vexation: I want a standardized layout for package description files, I do
not want to manually apply such a layout, and I am not satisfied with the
cabal-fmt tool.

Solution: Either invest in making cabal-fmt configurable or create a fork
for my specific style.

2. Styling Cabal project:

Vexation: Similarly, I want a standardized layout for cabal.project files, I
do not want to manually apply the layout, and I have not found any existing
styling tool.

Solution: Create a configurable cabal.project file styler.

3. Styling Haskell source code:

Vexation: I do not want to manually style my code nor do I like the existing
(default) styles.

Solution: Specify a style configuration for one of the existing configurable
Haskell source code stylers.

4. Checking dead-code within Haskell source code:

Vexation: The existing tool weeder only works when both weeder and
the Haskell code has been compiled with exactly same version of GHC,
requiring frequent and lengthy recompilation.

Solution: Setup a continuous integration solution.

5. Checking documentation coverage of Haskell source code:

Vexation: I would like to ensure that Haddock documentation exists for all
exported functions and that module documentation exists for every mod-
ule.

Solution: Investing modifying Cabal or cabal-install to support documen-
tation coverage checking.

6. Checking lower bounds of Cabal package description:

https://cabal.readthedocs.io/en/3.6/cabal-package.html
https://hackage.haskell.org/package/cabal-fmt
https://hackage.haskell.org/package/cabal-fmt
https://cabal.readthedocs.io/en/3.6/cabal-project.html
https://en.wikipedia.org/wiki/Dead_code_elimination
https://hackage.haskell.org/package/weeder
https://hackage.haskell.org/package/weeder
https://haskell-haddock.readthedocs.io/en/latest/markup.html
https://hackage.haskell.org/package/Cabal
https://hackage.haskell.org/package/cabal-install
https://cabal.readthedocs.io/en/3.6/cabal-package.html


Vexation: I want to ensure that the project compiles with oldest compiler
listed in tested-with field paired with the lowest bound listed for each de-
pendency.

Solution: Improve my existing cabal-lower-bounds project.

7. Checking spelling of Haskell source code:

Vexation: I would like for a spell-checker, rather than being directly on the
source files, instead be applied to tokens on the abstract syntax tree while
being aware of “camel cased” token names.

Solution: Modifying an existing code styling tool to apply spell-checking
transformations.

https://cabal.readthedocs.io/en/3.6/cabal-package.html?highlight=tested-with#pkg-field-tested-with
https://github.com/recursion-ninja/cabal-lower-bounds
https://en.wikipedia.org/wiki/Camel_case

