
14740E8CBCE2C47B
6357561F92690F6C
335E6D5D7E98D761
94163B1F07168661
C537DB144AD14939
29CE56E631883629
338AEDBB811ADECF
C01304919B42AF0D

Title Conspectus 12022 Q2
Subtitle Chronical - II
Author Recursion Ninja
Date 12022+172 Tuesday, June 21
Word Count 1945 (ERT 8 min)
Code Lines 0

Formats .adoc .epub .html .markdown .txt

Quarter 2: Vernal Equinox to Summer Solstice
This is the second entry in my planned conspectus series, recounting my quarterly
professional and academic activities between a solstice and an equinox.

Masters Thesis
The academic journey of my masters program is soon coming to a close. A draft
manuscript of my masters thesis has been submitted to my committee for review
and my defense will take place in July. After a final draft is submitted to the School
of Arts & Sciences, I will graduate from Hunter College in the City of New York and
nearly immediately begin my doctoral work at The Graduate School and University
Center of the City University of New York.

The results of my thesis are currently, and likely to remain, incomplete. Too little
time remained between creating a correctly encoded model of TreeKEM and the
deadline for submission to the college. Constraints of computing time required
to verify the many combinations of model parameters exceeded the timeline for
drafting, defending, and submitting the manuscript. Hence the results cannot yet
be soundly applied to nearly all secure group messaging apps.

Despite this less than desirable culmination, I find that the experience overall has
been greatly positive. The course of my masters program required I develop flu-
ency in the language Promela as well as sophisticated competency with the Spin
model checking tool. These skills are much less proficiencies of linguistics or en-
gineering than they are a conceptual development in understanding the domain of
verification. Consequently, I found the skills cultivated during my masters program
to be surprisingly transferable between other formal methods tools which involve
model checking.

https://recursion.ninja/blog/12022-Q2.adoc
https://recursion.ninja/blog/12022-Q2.epub
https://recursion.ninja/blog/12022-Q2.html
https://recursion.ninja/blog/12022-Q2.md
https://recursion.ninja/blog/12022-Q2.txt
https://www.securemessagingapps.com/
https://en.wikipedia.org/wiki/Promela
https://en.wikipedia.org/wiki/SPIN_model_checker

Furthermore, the unfinished verification computations can continue after my thesis
submission until all the model parameters have a completed result. At this time,
the results can be re-tabulated and the work can be submitted for publication to a
conference or journal venue.

AMNH Research Associate
Preliminary collaboration work has been resumed with my prior research team,
Wheeler Lab at the American Museum of Natural History (AMNH). My efforts have
been minimal during the conclusion of masters research, but what little time I could
afford has been directed towards architecting an integration testing framework
for the lab’s next generation phylogenetic graph analysis software platform. The
framework is written in Haskell, but designed to be extensible and maintainable by
a team member without knowledge of the Haskell language. So far, the framework
has been successfully deployed and the integration test-suite has grown to over
120 test cases!

To achieve success for our integration testing framework, I relied heavily on tasty;
another testing framework which is both venerable and extensible. Individual in-
tegration tests are specified by indicating an execution script, a collection of input
files, and one or more golden files. The specification components are then col-
lected to create an integration test via the [tasty-golden] library which invokes the
phylogenetic software platform under test to evaluate the script and generate the
expected output files. Generated output is then compared to the expected output
in the associated “golden” file, with any differences being reported as a test fail-
ure. The both the test specification interface and the technical construction of test
suites are simple with Tasty.

The most crucial component to the integration testing framework’s success is test
case inference. To create a new test case, designers need only create a new
directory containing all the specification components. When the integration test
suite is invoked at runtime, it scans the test directory for all child directories which
contain specification components. The integration test framework then constructs
the Tasty TestTree dynamically at runtime and then execute all test cases in
parallel. Furthermore, Tasty’s withResource function enables some clever
memoization of IO actions to reduce duplicate work across integration test cases
as well as prevent race conditions during parallel test case execution. Overall the
task has been an unqualified success.

Haskell Code Quality Control
In my prior conspectus, I describe some dissatisfactions I have with tooling sur-
rounding the Haskell programming language. While I have not made addressing

https://wardwheeler.wordpress.com/
https://www.amnh.org/research/computational-sciences
https://hackage.haskell.org/package/tasty
https://ro-che.info/articles/2017-12-04-golden-tests
https://hackage.haskell.org/package/tasty/docs/Test-Tasty.html#t:TestTree
https://hackage.haskell.org/package/tasty/docs/Test-Tasty.html#v:withResource
https://recursion.ninja/blog/12022-Q1#haskell-code-quality-control

any one of the listed grievance an active concern this quarter, happenstance has
revealed some ameliorations. Here is a recountal of my original description along
with the discovered (partial) remedy:

5. Checking documentation coverage of Haskell source code:

Vexation: I would like to ensure that Haddock documentation exists for all
exported functions and that module documentation exists for every mod-
ule.

Solution: Investing modifying Cabal or cabal-install to support documen-
tation coverage checking.

Serendipitously, Marcin Szamotulski has been working on extending cabal with a
new haddock-project command. I am hopeful that the culmination of their work
will permit reporting documentation which is missing for any exposed definition in
the generated Haddock documentation. Ideally, cabal project-haddock would
support termination with an exit code other than EXIT_SUCCESS if one or more
exposed definitions are missing a corresponding Haddock documentation annota-
tion. Whether this desired termination behavior occurs by default or is enabled by
a flag, it would greatly improve the new command’s utility when utilized within the
context of continuous integration.

7. Checking spelling of Haskell source code:

Vexation: I would like for a spell-checker, rather than being directly on the
source files, instead be applied to tokens on the abstract syntax tree while
being aware of “camel cased” token names.

Solution: Modifying an existing code styling tool to apply spell-checking
transformations.

During the course of my masters thesis, I wanted to incorporate an automated
spell-checking routine which was configurable in such a way that I could elimi-
nate false positives from unrecognized domain specific terms, abbreviations, or
acronyms not in a standard English dictionary. A cursory search of the GitHub
Actions Marketplace did not disappoint. Ultimately I decided on selecting the
@check-spelling/check-spelling GitHub Action. The Action is well documented,
and open source. Most importantly, it supports adding “area dictionaries,” dic-
tionaries with additional words specific to a domain such as software terms, font
names, or Haskell!

https://haskell-haddock.readthedocs.io/en/latest/markup.html
https://hackage.haskell.org/package/Cabal
https://hackage.haskell.org/package/cabal-install
https://coot.me/
https://coot.me/posts/cabal-haddock-project.html
https://en.wikipedia.org/wiki/Camel_case
https://github.com/marketplace/actions/check-spelling
https://github.com/marketplace/actions/check-spelling
https://www.check-spelling.dev/
https://github.com/check-spelling/check-spelling/wiki
https://github.com/check-spelling/check-spelling
https://github.com/check-spelling/check-spelling/wiki/Feature:-Area-dictionaries
https://github.com/streetsidesoftware/cspell-dicts/tree/main/dictionaries/software-terms
https://github.com/streetsidesoftware/cspell-dicts/tree/main/dictionaries/fonts
https://github.com/streetsidesoftware/cspell-dicts/tree/main/dictionaries/fonts
https://github.com/streetsidesoftware/cspell-dicts/tree/main/dictionaries/haskell

