
41FACBA374AED307
E65D2C591B34FAB0
AD72CD04A4C83BF3
13BCB5D158308253
96E6E4E62373836F
164EC3DF2B042222
039A8BC24EA2B1EF
8C8220EB02CB1B27

Title Parsing Permutations
Subtitle Trees, Temporality, and Termination
Author Recursion Ninja
Date 12023+074 Wednesday, March 15
Word Count 4068 (ERT 20 min)
Code Lines 37

Formats .adoc .epub .html .markdown .txt

Preamble
Since 2015 I have intermittently worked with Mark Karpov on the venerable mega-
parsec Haskell package. With the release of megaparsec-6.0.0, all polymorphic
parsing combinators were moved to the newly released parser-combinators
package. Unlike megaparsec, parser-combinators is a fully
generic parsing package with a truly minimal dependency footprint! According to
a hackage reverse dependency query, parser-combinators is a
direct dependency of 63 packages at the time of writing, so ecosystem adoption
is modest but notable.

With the release of parser-combinators-0.2.0 I added the
Control.Applicative.Permutations module, and since then my maintenance

contributions to both megaparsec and parser-combinators has waned to primarily
this sole module. Despite the module’s small interface, simple type signatures,
and succinct code, I greatly appreciate the practicality provided as well as the
theoretical underpinnings. The algorithm I used for efficiently parsing arbitrary
permutations of combinators was neither original nor recent work. Published in
2004, “Parsing Permutation Phrases” describes astonishingly elegant functional
definitions for representing and processing permutations. The work is deserving of
the attributed accolade “Functional Pearl”. A reviewer comparing the Haskell code
within the module to the decades old paper would find immediately recognizable
similarities as well as a few compatibility modifications required to bring the original
work up to the modern Haskell Prelude. While the correctness
and elegance of this pearl will never age, what follows is a meager insight relating
permutation parsing and Computation Tree Logic.

https://recursion.ninja/blog/perm-parser.adoc
https://recursion.ninja/blog/perm-parser.epub
https://recursion.ninja/blog/perm-parser.html
https://recursion.ninja/blog/perm-parser.md
https://recursion.ninja/blog/perm-parser.txt
https://github.com/mrkkrp
https://hackage.haskell.org/package/megaparsec
https://hackage.haskell.org/package/megaparsec
https://hackage.haskell.org/package/megaparsec-6.0.0
https://hackage.haskell.org/package/parser-combinators
https://packdeps.haskellers.com/reverse/parser-combinators
https://hackage.haskell.org/package/parser-combinators-0.2.0
https://hackage.haskell.org/package/parser-combinators/docs/Control-Applicative-Permutations.html
https://doi.org/10.1017/S0956796804005143
https://wiki.haskell.org/Research_papers/Functional_pearls#Online
https://en.wikipedia.org/wiki/Computation_tree_logic

Postulate
My present comprehension of and commentary on permutation paring did not
manifest from the ether. The inciting incident emerged as an evidently innocent
issue. A feature request was made for an extension of the parser-combinators
package’s Control.Applicative.Permutations module to include the following
additional parser combinator definitions:

manyPerm :: Functor m => m a -> Permutation m [a]
manyPerm parser = go []

where
go acc = P (Just (reverse acc)) (go . (: acc) <$> parser)

somePerm :: Functor m => m a -> Permutation m [a]
somePerm parser = P Nothing (go . pure <$> parser)

where
go acc = P (Just (reverse acc)) (go . (: acc) <$> parser)

From the same feature request, operational ambiguity was removed by elabo-
rating on the hypothetical usage the new parser combinators. The permutation
parser spec was considered to help better understand the requested parsing
semantics:

spec = (,,)
<$> char 'a'
<*> optional (char 'b')
<*> somePerm (char 'c')

The feature request expects the behavior of spec to successfully parse the
following input/output pairings:

"abc" ('a', Just 'b', "c")
"cac" ('a', Nothing , "cc")
"cacb" ('a', Just 'b', "cc")
"cabc" ('a', Just 'b', "cc")

The last three pairings exemplify how the semantics of the requested parser com-
binators differs from the existing combinators’ functionality, by “grouping up” 'c'
values encountered within the input string and returning the collection of 'c'
values in the third slot of the permutation parser’s result.

https://github.com/mrkkrp/parser-combinators/issues/39
https://github.com/mrkkrp/parser-combinators/issues/39
https://hackage.haskell.org/package/parser-combinators-0.2.0
https://hackage.haskell.org/package/parser-combinators/docs/Control-Applicative-Permutations.html

Permutation Parsers
Persistent problems in perpetual processing

There are going to be some technical problems with parsing permutations under
the semantics of the feature request.

Let us consider another parser combinator example and unpack how the
permutation parser (currently) works:

Permutation Parser:

example = (,,)
<$> char 'a'
<*> manyPerm (char 'b')
<*> somePerm (chat 'c')

Furthermore, let us consider two input strings and outcomes:

Input String:

acceptable = "ccba"
nonhalting = "ccbacbcb"

Desired Outputs:

success = ('a', "b", "cc")
failure = ('a', "bbb", "ccc")

Alternation Trees
The way permutations are parsed is via a tree structure. The height of the parsing
tree is exactly N , where N is the number of parser combinators used to construct
the permutation parser. For the permutation parser example defined
above N = 3. The number of children at a node is equal to the node’s height. For
the permutation parser example defined above, the root node at the “top” of
the tree has 3 children, each of these children on second layer has 2 children, the
third layer has 1 child, and finally the leaves have zero children. Nodes in the tree
represent permutation parser state and edges correspond to a successful parse
result of one combinator.

Nondeterministic computation
The parser evaluation is best thought of as a nondeterministic sequence of partial
computations which occur while traversing the tree in a breadth first, layer by layer
traversal, terminating when it arrives at a single leaf node representing a complete

permutation. At the root of the tree the permutation parser attempts to parse each
of the N possible combinator. The edges leading from the root node to the second
layer of nodes correspond to successfully parsing one of the combinators. For
each successfully parsed combinator at the root node, the computation follows
the corresponding edge to the node in the second layer. Note that not all nodes
on the second layer are visited. A parse failure of a combinator means that the
corresponding edge to the second layer will not be traversed and the whole sub-
tree will be pruned from the computation.

Each node in the second layer uniquely represents the partial computation state
of 1 successful combinator parse result. The partial computation at the node con-
tains the result of the permutation combinator which lead into the node as well the
partially consumed input stream missing the elements consumed in parsing the
associated combinator result. The nondeterministic computation continues on the
second level with each visited node independently resuming the partial computa-
tion. The nodes attempt to parse the N − 1 combinators remaining, excluding the
1 combinator which has a parse result stored in the node’s partial computation.
Similarly to the root node, for each successfully parsed combinator at the node in
the second layer, the computation follows the corresponding edge to the node in
the third layer. Again, a parse failure of a combinator on the second layer means
that the corresponding edge to the third layer will not be traversed and the whole
sub-tree will be pruned from the computation.

This form of nondeterministically extending partial computations down a tree,
pruning the search space on combinator parse failures continues. Generally
speaking, when parsing a permutation with N combinators, a tree of height N
is produced. The root node is said to have height N and the leaves are said to
have height 0. On the layer with height x, each node contains a partial computa-
tion with N − x combinator results from the path to the root node and there are
x remaining combinators which must be parsed in the node’s (inclusive) sub-tree.
The nodes within the layer with height $$‘ each attempt to parse their unique set
of x remaining combinators, excluding the unique set of N − x combinators which
parse results are already stored in the node’s partial computation. For each suc-
cessfully parsed combinator, the computation follows the corresponding edge to
the node in the layer with height x−1. A parse failure of a combinator correspond-
ing edge to the layer with height x−1 will not be traversed and the subtree beneath
the untraversed edge will be pruned from the computation.

When a leaf node is reached, the height is x = 0 and there are N − x = N unique
successfully parsed combinators and x = 0 remaining combinators. Hence reach-

Figure 1: General computational tree of the example parser

ing a leaf node in the nondeterministic computation terminates the computation
with a successful permutation parse result, each combinator being parsed once.
The first leave node reached ends the entire nondeterministic computation with a
successful permutation parse result. If no leaf node is reached, the permutation
parser fails.

The computational tree of example
With the permutation parser evaluation described above, there are exactly 6 regu-
lar expressions which will be accepted by the permutation parser example.

1. ab*c+
2. ac+b*
3. b*ac+
4. b*c+a
5. c+ab*
6. c+b*a

Below is a rendering of the generic permutation parser’s computational tree. The
circular nodes show the tuple containing the partial parse result, corresponding
to the parser state of the computation. The edge transitions are labeled with
indicators of which parser combinator was used to transition from one parse state
to the next. Beneath each leaf of the computational tree is a polygon containing
the regular expression which the leaf parses.

Note how each path from the root to a leaf corresponds to a unique permutation
of example’s component combinators! Furthermore,
the nodes along the path from each root to each leaf produce a unique sequence
of partial computations which, when composed sequentially, produce a unique
parsing computation for each permutation. The computation tree, by construction,
always terminates.

Performance considerations
With this nondeterministic tree evaluation algorithm, we are certain to success-
fully parse a constructed “Permutation Parser” if and only if the prefix of the input
stream matches a permutation the component combinators. To analyze the per-
formance of this permutation parser construction we will require deploying some
graph theory. For permutation parser with N combinators, the graph G = (V, E)
results in a computation tree, with 1 root node and N ! leaf nodes. The number

of edges |E| equals the number of permutations of non-null subsets of N dis-
tinct objects. Fortunately, this is a well defined expression documented by OEIS
A007526.

edges :: Natural -> Natural
edges 0 = 0
edges n = n * (edges (n - 1) + 1)

All graphs G = (V, E) which are a tree, have the |V | = |E| − 1. This too is a well
defined expression, documented by OEIS A000522.

nodes :: Natural -> Natural
nodes = succ . edges

Additionally, all graphs G = (V, E) which are a tree, have the a number of paths
from the root node to a leaf node equal to the number of leaf nodes.

paths :: Natural -> Natural
paths n = product [1..n]

For simplicity, let us assume all component parsers are pair-wise mutually exclu-
sive. Elegantly, the tree structure of the algorithm memoizes partial computations,
preventing a full look ahead and full backtracking on permutation parser evalua-
tions which initially succeed on one or more component combinators then subse-
quently fail on a later combinator. Furthermore, lazy evaluation means that the
nondeterministic algorithm does not explore the whole tree. Instead it performs
a depth first search with the described early abort/short-circuiting of a subtree
if the associated combinator fails to parse. Additionally, because in practice the
combinator attempts are evaluated single threaded in the order of composition,
a clever author can order the component combinators in order of success prob-
ability. The practical result of this algorithm coupled with lazy, single-threaded,
order-dependent evaluation is the following:

In the best case, the algorithm will only proceed down one path of
the computational tree, with 0 redundant parse attempts of component
combinators. Conversely, in the worst case, the algorithm will attempt
to proceed down all N ! paths of the computation tree, and at each
leaf node of each path (except the last path) have the associated com-
ponent combinator fail to parse, resulting in |E| − N redundant parse
attempts of component combinators (wasted work). Hence we have
the parsing algorithm bounded below by Θ(N) and above by O(N !).

https://oeis.org/A007526
https://oeis.org/A007526
https://oeis.org/A000522

Figure 2: Resulting computational tree of parse example acceptable

Figure 3: Resulting computational tree of parse example nonhalting

Picturing parse processes
Below are renderings of permutation parse trees of partial computations for ex-
ample on two inputs. They illustrate the search graph of the permutation paring
algorithm and facilitate tracing steps through the search space.

First, consider the acceptable input string, desiring the output to be
success:

>>> parse example acceptable
Right ('a', "b", "cc")

>>> parse example acceptable == Right success
True

In this case, example succeeds in parsing the specified permutation, resulting
in success while also consuming the entire input string. This is exactly what was
desired, and hopefully also what the reader would expect.

Next, consider the nonhalting input string, desiring the output to be failure:

>>> parse example nonhalting
Right ('a', "b", "cc")

>>> parse example nonhalting == Right failure
False

Here we can see that the permutation parser example “succeeds” in
parsing nonhalting, but the result leaves in the unconsumed suffix many of the
stream symbols the proposed combinators permMany and permSome
were desired to match. This occurs because the permutation parsing algorithm
dismisses a component combinator after a match, and never again considers it for
the remainder of the input stream parsing. To modify the algorithm to support the
desired semantics of permMany
and permSome we would need to construct a new computation tree

Figure 4: General computational tree of the example parser

which, as the nondeterministic computation progresses, preserves all composite
combinators which are either permMany or permSome definitions. Let’s visualize
what such a computation tree would look like for example.

Modified computational tree of example
Below is a partial rendering of a computational tree which yields the requested
semantics for permMany
and permSome. Likely the first noticeable feature of the computation tree is that
it is infinite. Any permutation parser containing permMany
or permSome will necessarily produce a computation tree containing an infinite
recursive progression of branching subtrees.

Recall that the evaluation algorithm for a permutation parser requires exploring all
possible branches until each combinator is successfully matched or a parse failure
occurs. By the desired semantics of permMany, it can only result in
a partial success which awaits another matching input, or a parse failure. Similar
reasoning holds for permSome. Hence, permMany
and permSome will always result in either a parse failure or an infinite loop (only
possible when parsing an infinite stream). This is why the desired semantics for
permMany and permSome will produce an infinite computation tree.

Conclusion
Any permutation parsed constructed with permMany
or permSome and evaluated as described by “Parsing Permutation
Phrases” will evaluate to either fail or ⊥.

https://doi.org/10.1017/S0956796804005143
https://doi.org/10.1017/S0956796804005143

